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1

Finite difference schemes are often used to numerically solve ordinary and
partial differential equations, [7]. It is easy to create such a scheme, since
derivatives are simply exchanged for difference ratios, which approximate the
derivatives to some accuracy. The accuracy is found through Taylor expan-
sion. There is no standard rule for how these schemes are created and thus
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Abstract

It is difficult to predict stability properties of a finite difference
scheme. It has to be investigated through the roots of the Z-trans-
formed and Fourier transformed difference scheme (modal equation).
To simultaneously investigate several schemes for the viscoelastic wave
equation, it is possible to derive the modal equation with parame-
terized coefficients. Several conditionally stable schemes were found,
where the most efficient is a staggered scheme with a stability condi-
tion closely resembling that of an elastic scheme.

Introduction

*The Rice Inversion Project, Department of Geology and Geophysics, Rice University,

Houston TX 77251-1892

'The Rice Inversion Project, Department of Computational and Applied Mathematics,

Rice University, Houston TX 77251-1892



leaves quite some room for experimentation. The accuracy of the finite differ-
ence scheme is easy to find and it is commonly a good measure for how well
the scheme will solve the differential equation, i.e., the higher the accuracy,
the closer the numerical solution will be to the true solution. For time depen-
dent problems the solution at earlier time is used to update the solution to
the next time level. There are two distinctive techniques to update the solu-
tion in time, explicit or implicit updating (time stepping). For implicit time
stepping it is necessary to solve an equation system to update the solution in
time. Explicit time stepping is thus naturally faster. Implicit time stepping
tends to attenuate higher frequency modes in the solution as well. Explicit
time stepping is always unstable (solution grows uncontrollably) for at least
some choices of parameters, e.g., time step, whereas implicit time stepping
is stable (for well-posed problems). Explicit time stepping is preferred for
hyperbolic problems, since it does not necessarily attenuate the solution (hy-
perbolic systems are energy preserving) and is fast. Hence, it is necessary
to find the parameter choices for which the explicit scheme is not unstable,
i.e. the stability condition. This can prove difficult since some schemes are
unconditionally unstable (no such choices exist) and only some conditionally
stable. The problem is thus to find a conditionally stable scheme and the
stability condition.

It 1s possible to investigate the stability of a particular finite difference
scheme by Fourier transforming the scheme in space and Z-transforming the
scheme in time. The result is an equation which depends on wavenumber.
The scheme is stable if the absolute value of the roots (poles of the scheme) of
the equation are all equal to or less than one for all possible wavenumbers [7].
The more strict formulation states: It is an necessary condition for stability
or It is a sufficient condition for instability IF the absolute value of one or
more of the poles is greater than one. The method implicitly implies that
parameters for the differential equation are independent of space (constants).

Some initial work to solve the viscoelastic wave equation with an explicit
finite difference scheme encountered stability problems, [1], [2]. To find a
reliable scheme it was clearly necessary to thoroughly investigate the stability
properties of several different realizations. All the realizations are first or
second order accurate in time and fourth order accurate in space and based
on a stress-velocity formulation with one memory variable, [1], [9].

The differential equation and the several different finite-difference scheme
realizations will be covered in the first section as well as the investigation
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method. The following section presents the investigation and stability results
for the schemes. Finally, the most efficient conditionally stable scheme will
be thoroughly analyzed for its stability condition.

2 Viscoelastic Wave Propagation, Discrete
Schemes and Method for Investigation

The 1-D viscoelastic wave equation for a constitutive relation corresponding
to a standard linear solid is,

'4

pr=—K(1l+7)v,—r

1
(1) re=——(r+ Ktvy)

To ’

1

UVt = ——Pxz

[5]. It is an initial value problem, ie., p=r=v =0, t < 0. K is the bulk
modulus, p is the density, and 7 is roughly proportional to the reciprocal of Q)
and a measure of attenuation, [5]. 7, is a relaxation time and determines the
frequency range where there is most attenuation. p is the pressure (stress)
and v is the particle velocity. r is the, so called, memory variable, which
reflects the 'memory’ of the viscoelastic medium.

Several different types of schemes and grids can be used to discretize the
continuous system, Equation (1). The general scheme created here can be
first or second order accurate in time and fourth order accurate in space.
It is possible to fit the scheme for some instances of parameter values on a
staggered grid. Acoustic/elastic problems have generally been solved with
leap-frog schemes for updating in time [8]. Hence, leap-frog stencils will be
used for to update p and v. The equation for the memory variable r might
for small values of 7, be stiff and it is natural to solve the equation with an
Euler-Backward or Crank-Nicolson scheme, cf., [6]. With these specification
a fairly general finite difference scheme for Equation (1) can be constructed.
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where n corresponds to time level (¢ = nAt) and m to space (z = mAxz).
Dy is a discrete centered spatial differentiation operator. The parameters
B, a, by, by, cy1, ¢y are used to change the scheme, 8 € {—1,0}, a, by, bs,¢1,¢; €
[0,1]. The parameters do not affect the purely acoustic part of the scheme,
but only the part connected to the memory variable. An abundance of re-
alizations are clearly possible even though the possibilities are restricted
through the small parameter space, 8, a etc.. To investigate the stability
of the different realizations, the scheme [Equation (2)] is Fourier transformed
in space and Z-transformed in time, creating a fifth or sixth order equation.
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22 [2q — P21+ 7)q] + 2 [1 — Y2rg((1 = b)er(1 — ) + (1 — e1)ba(1 — b)) +
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where ¢2 — 4)2 (sm(kAz)(43—cos(kAz))) , g = };_Zz_, ¢ = 1__;]%, n = (1 +

B)f—:, A= Coﬁ—i- co = \/_%— is the zero frequency velocity and k is the
wavenumber. ) depends on the spatial accuracy of the scheme and the par-
ticular stencil. If the absolute value of the solutions to Equation (3) is less
than one, then the corresponding scheme is stable.



3 Stability Investigation

We will investigate three suites of different schemes. The three suites are
distinguished by the values of 8 and a. These parameters changes the stencil
for updating the memory variable in time. The three different combinations
are: (B = 0,a = 1) (Euler backward), (8 = 0,a = 0.5) (Crank-Nicolson),
and (8 = 1,a = 0.5) (Crank-Nicolson).

The parameters b;,¢;; 1,7 € {1,2}, determines the “mix” in time of the
velocity into the memory variable update equation and of the memory vari-
able into the pressure update equation.

The original scheme by Blanch et al., [1], [2], was equivalent to 8 = 0,
a =03, by = 0.5, bp =1, and ¢ = 0. The scheme is unconditionally
unstable. Figure 1 shows the position of the poles for the scheme as well
as other related schemes with § = 0, which results in a fifth order equation
and five poles. A first attempt to adjust the scheme might be to change the
source term for the memory variable equation. Changing b; between 0 and 1
and tracking the maximum absolute value of all the poles yields the graph in
Figure 2. Changing a to a = 1 to create an even more stable scheme (Euler
backward) for updating the memory variable in time has no effect on the
stability for the whole scheme, Figure 3. Changing ¢; with a = 0.5, b; = 0.5,
b, =1, and ¢; = 0.5 produces the curve in Figure 4. Figure 5 shows the
position of the pole which causes the instability of the scheme for small values
of ¢;. It is clearly possible to create a conditionally stable scheme for the
configuration § = 0 and a = 0.5. There is not even an ad hoc explanation
for how and/or why the different schemes are stable/unstable, though. Both
bi and ¢; can be varied to create a 2-variable plot to yield more insight into
the phenomenom, Figure 6. Stable schemes occur for large values of b; and
c1, suggesting that the most recent information should be used. The stable
schemes are unfortunately only first order accurate, though. The only second
order accurate scheme occurs for b; = ¢; = 0.5, which is unstable.

The last suite of schemes (8 = 1, a = 0.5) are for some instances possible
to implement as staggered schemes. Fixing b, = ¢; = 0.5 will ensure that
the schemes all are second order accurate in time for all values of by, ¢;.
The positions of the poles for this suite of schemes are plotted in Figure
7. The absolute value for the maximum pole as a function of b; and ¢
is plotted in Figure 8 and 9. Figure 10 shows a slice from Figure 8 for
c; = 1. Clearly there are several schemes which are conditionally stable.
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Figure 1: Position of poles for § = 0 schemes. Unstable, though not obvious.

It is always the poles close to —1, which are outside the unit circle for the
unstable schemes.
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Figure 2: Value of maximum pole minus one. Crank-Nicolson, 3 = 0. The
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Figure 3: Value of maximum pole minus one. Crank-Nicolson, f = 0. The
value is clearly greater than one for all choices of b;.



—y e -
S o] [

-y
N

o o o
> ) )

Maximum absolute value of all poles (minus 1)

o4
[N

0 1 1 t 1 1 | { 1 Il
0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 1
cl

Figure 4: Value of maximum pole minus one. Crank-Nicolson, # = 0. The
scheme becomes stable for ¢; greater than approximately 0.55 < ¢;.
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Figure 5: The position of the maximum pole and the pole corresponding
to the largest wavenumber. They coincide for small values of ¢;. For large
values of ¢; the largest pole corresponds to wavenumber k = 0 and is located
at 14 0z. Dots and crosses conicides until the scheme is stable. Solid - Part
of the unitcircle. Crosses - The position of the largest pole (if inside scale of
plot). Dots - Position of pole corresponding to the largest wavenumber.
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Figure 6: Absolute value of maximum pole for 8 =0,a =0.5,b, =1, c, = 1
and varying b; and c¢;. Stable scheme occurs for large values of ¢; and b;.
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Figure 7: Position of poles for # = 1 schemes, for a large value of the
attenuation parameter 7. Clearly unstable. It is always the poles close to
—1, which are outside the unit circle for the unstable schemes.

Two schemes (b = 0,¢; = 1) and (b = 1,¢; = 0) are possible to implement
as staggered schemes. One with the memory variable r located at the same
positions as the pressure p or located at the same positions as the velocity
v. Figure 8 suggests that schemes close to one of the staggered schemes is
conditionally stable. The same conclusion could be made from the pole plot
for B = 0, Figure 6, even though it is not as clear as in Figure 8, since the
staggered schemes can only be partially constructed for # = 0.

The numerical dispersion properties of staggered schemes are better than
non-staggered schemes’, which make a staggered formulation more prefferable
than a non-staggered. The most efficient (least necessary amount of compu-
tation) staggered formulation places the memory variable r at the location of
pressure p. This is the most efficient scheme, which is second order accurate
in time and fourth order accurate in space, where the memory variable is
updated in time by an unconditionally stable scheme (Crank-Nicolson).
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uration. Other view.
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4 Stability Condition for the
Staggered Scheme

It is necessary to know the stability condition of a finite difference scheme in
order to use it to solve a differential equation. Hence, the stability condition
of the scheme suggested in the section above must be found. The Z- and
Fourier transform of the discrete staggered formulation of the viscoelastic
differential equation (1) yields the following third order equation, [3], [4],
and [9]. The corresponding sixth order equation, Equation (3), contains only
even order terms and is hence equivalent to a third order equation.

224+ 22—q—-2+ (1 +7(1 —¢))+
(4) z[142¢ —q*(1+7(1+¢,/9))] — ¢
=0

where ¢ = g—;g, ¢r = 345, and P = 2A (Sin(k°/2)(ll23_c°s(k°))). Y is slightly

different from before due to the staggered grid. There are a few simple
limiting cases where the solution easily can be found. If  — 0 then 2z, =

L= 21+ 7)/2£ /Il =421 +7)/2° =1, 23 = 1, and for ko =0, 21, = 1

and z3 = ¢. For a corresponding acoustic scheme the roots would be 2z, =
1—?/2+ \/[1 —2/2]? — 1. This is suggests a likely stability limit at either
1 < 2 or /1 + 7 < 2. The limits correspond to

7

A-<1
) f<,
where A\ could be either A
(6) A= Az
or

Cmaz At cov/1 + TAL
Az Az '
The number cAt/Az is usually referred to as the Courant number.

The stability limit is most easily investigated numerically by fixing the
value for ¢ and Az and varying At. Figure 11 shows the absolute value of
the maximum pole and the absolute value of a complex pole for the largest
possible wavenumber (corresponding to spatial Nyquist frequency), where
7 = 0 and n — 0. The two expressions, Equation (6) and (7), for A yield

(7) A=
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Figure 11: Absolute value of maximum pole and absolute value of pole cor-
responding to maximum wavenumber. The poles become larger than one
exactly at the stability limit. 7 = 0, p — 0. Solid - Absolute value of pole
correspoding to maximum wavenumber. Plus - The absolute value of the
pole with the largest absolute value of all poles for all wavenumbers.

the same stability limit for 7 = 0, which is a purely acoustic medium. Using
expression (6) for the stability limit for 7 = 0.02 (@ =~ 100), » — 0, and
plotting the same poles shows that the acoustic stability limit is larger than
the actual, Figure 12. Plotting the same poles but using the expression (7)
as the stability limit results in Figure 13. The poles become larger than one
exactly at the stability limit in Equation (7).

The numerical stability results supports the theory for n — 0. In real
simulations, however, n will be a finite value, since otherwise the simulations
will essentially be acoustic with very little viscous influences unless 7 is very
large (7 > 1). Solving Equation (4) for n = 0.2 and 7 = 0.02 yields the pole
configuration in Figure 14. The stability limit seems to be the same for a
finite value of n. Increasing 7 to 7 = 0.2 has no effect on the stability limit, yet
is the configuration changed, Figure 15. It is possible to see in Figure 15 that
the absolute value of the pole corresponding to the maximum wavenumber
starts moving towards one (the unitcircle) for lower wavenumbers than in
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Figure 12: Absolute value of maximum pole and absolute value of pole cor-
responding to maximum wavenumber. The Courant number is compared
to the stability limit in Equation (6). The scheme becomes unstable for a
Courant number slightly less than that stability limit. = = 0.02,  — 0.
Solid - Absolute value of pole correspoding to maximum wavenumber. Plus
- The absolute value of the pole with the largest absolute value of all poles
for all wavenumbers.
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Figure 13: Absolute value of maximum pole and absolute value of pole cor-
responding to maximum wavenumber. The poles become larger than one
exactly at the stability limit in Equation (7). 7 = 0.02, n — 0. Solid -
Absolute value of pole correspoding to maximum wavenumber. Plus - The
absolute value of the pole with the largest absolute value of all poles for all
wavenumbers.
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Figure 14: Absolute value of maximum pole and absolute value of pole cor-
responding to maximum wavenumber. The poles become larger than one
exactly at the stability limit in Equation (7). 7 = 0.02, n = 0.2. Solid -
Absolute value of pole correspoding to maximum wavenumber. Plus - The
absolute value of the pole with the largest absolute value of all poles for all
wavenumbers.

Figure 14. For n = 5 Figure 16 suggests the same stability limit as before.
The specific behavior of the poles is naturally different from before.

The exact pole locations for a range of wavenumbers are for 7 = 0.5,
n = 0.2 shown in Figure 17 (stable) and 18 (unstable). The complex poles
corresponding to propagating modes become real for ¢ large enough to violate
the stability condition. One of the poles attains an absolute value larger than
one whereas the other has an absolute value less than one. Figures 19 and 20
show corresponding plots for n = 5 (7 = 0.5). Here the originally real pole
breaks out of the unit circle in contrast to the n = 0.2 case.

20



1.01 T T T T ¥

1.0051

-
T

B o o o S S e

0.995[

Absolute value of poles

o

©

©
T

0.985

.9 1 1 1 1 1
0 E-BB -4 -2 0 2 4 6
Courant number as fraction of stability limit minus one x10°

Figure 15: Absolute value of maximum pole and absolute value of pole cor-
responding to maximum wavenumber. The poles become larger than one
exactly at the stability limit in Equation (7). 7 = 0.2, n = 0.2. Solid -
Absolute value of pole correspoding to maximum wavenumber. Plus - The
absolute value of the pole with the largest absolute value of all poles for all
wavenumbers.

21



1.004 T T T

1.003-

1.002f

1.001-

-
T

B L B S R

0.999f

Absolute value of poles

0.998}

0.997

0.996

o 3 99 5 1 1 1 1 1
) -4 2 0 2 4 6

Courant number as fraction of stability limit minus one x10°

Figure 16: Absolute value of maximum pole and absolute value of pole cor-
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Figure 17: Location of poles (roots) for the Courant number below the sta-
bility limit, = 0.2 and 7 = 0.5. Two sets of poles closely follow the unit
circle, whereas a purely real pole changes value around gq.
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Figure 18: Location of poles (roots) for the Courant number above the sta-
bility limit, » = 0.2 and 7 = 0.5. Two sets of poles closely follow the unit
circle, whereas a purely real pole changes value around ¢. The poles following
the unit circle pass for some wavenumber the point —1 + 0z and both become
purely real. One with an absolute value greater than one and one less than
one. The modes corresponding to wavenumbers where the poles are greater
than one will numerically explode.
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Figure 19: Location of poles (roots) for the Courant number below the sta-
bility limit, n = 5 and 7 = 0.5. Two sets of poles closely follow the unit
circle for small wavenumbers but have considerably smaller absolute value
for large wavenumbers. A purely real pole changes value around ¢. Here q is
negative.
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Figure 20: Location of poles (roots) for the Courant number above the sta-
bility limit, 5 = 5 and 7 = 0.5. Two sets of poles closely follow the unit
circle for small wavenumbers but have considerably smaller absolute value
for large wavenumbers. A purely real pole dcreases its value from ¢, which is
its value for 0 wavenumber. The purely real pole passes for some wavenum-
ber the point —1+ 07 and attains an absolute value greater than one. This in
contrast to the case n = 0.2 where the complex poles became real and their
absolute greater than one. The modes corresponding to wavenumbers where
the pole is greater than one will numerically explode.
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5 Conclusions

Stability of finite difference schemes is difficult to predict. The poles of the
schemes must be analyzed for all possible parameter combinations. Several
schemes can be investigated simultaneously by deriving the modal equation
for a set of general parameters.

Several conditionally stable finite difference scheme were found for the
viscoelastic wave equation corresponding to a constitutive relation of one
standard linear solid. The most numerically efficient scheme is a staggered
scheme second order accurate in time and fourth order accurate in space.
Only spatially fourth order accurate schemes were investigated.

The stability limit for the staggered scheme is

Crmaz AT 6
(8) < :

Az VD
where D is the dimension and c¢,q is the infinite frequency velocity. Different

poles break out of the unit circle for too large Courant numbers depending
on the value 7.
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